Founded in 2008, Applied Bio-Minerals, Inc.  specializes in managing naturally present microbiomes using mixtures of mined minerals.

The company’s operating mode is based on observations, and a close collaboration with the customer. The holistic approach enables farmers to use microbes already present on their farm to their benefit by lowering their inputs and maximizing their revenues, all naturally. As part of the service provided to customers, the company regularly measures progress to ensure the farmer’s goals are met.

Their approach is to examine the entire living soil profile and record its evolution from a baseline set before the application of products. Among the many variables one is essential, the amount of living micro-organisms, and the ratio between bacteria and fungi, at various soil depths.

That is where microBIOMETER® comes in. They have been utilizing the microBIOMETER® soil test in their business since 2020.

“microBIOMETER® is a very convenient tool to have a quick result (in the field) on microbes and allows decisions and adjustments in conducting the field as the season progresses or from one season to the next. Microbial life might sometimes be surprisingly active in depth (here a vineyard). The importance of checking compost quality also underlines the usefulness of the microBIOMETER®” – Herve Bonin, co-founder and managing partner of Applied Bio-Minerals, Inc.

About Applied Bio-Minerals, Inc.

Data from Applied Bio-Minerals, Inc. customer in Virginia

 

You’ve probably read how important it is for your soil to have a large, diverse microbial population, but how do you know that all those microbes are good?

Well to start, a healthy and optimal microbial population in your soil will always have a mixture of good and bad microbes. Together, these microbes perform important tasks to keep the soil functioning and the plants flourishing. Despite the complex relationship between plant and soil microbes, research suggests that soil microbes play a significant role in nutrient cycling, structuring plant communities, influencing plant performance and growth, and in disease control, which is why it’s so important to have a dense and diverse microbial community.

Thankfully, these soil microbe-plant interactions are self-regulated. And to keep these microbes functioning and plants thriving as they should, there’s a system of checks and balances that occurs within soil. For example, in a healthy, diverse soil mixture, microbes help plants suppress pathogens by inducing natural plant defenses, producing antibiotics, fighting against pathogens, or through the hyperparasitism of the pathogen. However, when there is an influx of pathogens in a not-so-healthy and diverse soil, things will start to function differently.

Once there’s a large enough influx of pathogenic microbes that have colonized within the soil, these microbes will produce chemical signals called autoinducers, which regulate microbial gene expression in a process called quorum sensing. In this example, quorum sensing allows those microbes to communicate with each other and change their genes to become virulent. Soil can become more susceptible to virulent factors if there isn’t adequate microbial diversity, as a diverse microbial community is critical to maintain ecological processes. To mitigate the negative aspects of quorum sensing, it’s imperative to have a diverse vegetation aboveground and a diverse microbial community belowground.

However, despite the good microbes’ best effort, soil conditions change and sometimes pathogens can take control. Depending on the pathogen, different physical signs and symptoms will become evident on the plant. Common signs of pathogenic disease on a plant can include foliage wilting, stunting, browning, and yellowing. Fortunately, because these are all aboveground symptoms, diseases can be easier to identify and potentially treat. Though, there are common belowground pathogens that affect the root systems of plants. These are more difficult to diagnose as they don’t always produce physical signs on the plant. The only way to specifically identify the pathogenic microbial species within your soil is to send your soil’s DNA to a lab for further analysis.

The best method that researchers have found to combat these soil pathogens is by supporting the good microbes, as the best defense is a good offense. Because microbial diversity has an almost linear relationship to microbial biomass, increasing the soil’s microbial biomass will increase its microbial diversity, which is the key to having a functioning and thriving ecosystem.

University study demonstrates legumes are more efficient at improving soil MBC than grasses

Under the direction of Assistant Professor Denise Finney, Kylie Cherneskie, biology student at Ursinus College, conducted an experiment on the impacts of nitrogen fertilizer addition on soil microbial communities. Kylie measured microbial responses using microBIOMETER®.

Click here to view the finished poster presentation. If you would like to incorporate microBIOMETER® into your classroom studies/academic research, we offer a selection of Academia Classroom Kits.

soil carbon

We recently received the following questions from one of our customers and below are the responses from Dr. Fitzpatrick.

Part of my research is surrounding the soil organic carbon results we attained from microBIOMETER®, and I am wondering if someone from your team could provide more information on what this means relative to total organic carbon (TOC) in a sample and if they are comparable?

The literature shows a strong correlation between available organic carbon and microbial biomass carbon (MBC). Since your compost is not soil, the available organic carbon in your sample would be TOC and would correlate. MBC by microBIOMETER® is even better than that: a big number tells you that you have carbon and all the nutrients needed by microbes and plants.

Since MBC has correlations to TOC is there a formula or percentage to convert MBC to TOC? Or approximately how much MBC makes up a TOC number?

There is no formula to correlate TOC with MBC. TOC includes carbon that we consider stored as well as carbon that is easily available to microbes. Increasing easily available carbon for example by applying compost will increase microbes and eventually increase TOC, but as microbes rarely exceed 1% of TOC, it would have little effect on TOC short term. In long term stable systems we see a correlation but the correlation is not the same for example in forest as in agriculture as the capacity to store TOC is different soils under different conditions. In studying the effect of long term (40 years) different management systems at U. of TN on MBC and TOC, MBC by microBIOMETER® correlated with the TOC demonstrating the effectiveness of sustainable practice on increasing TOC and the positive correlation with MBC levels.

Does a high MBC usually mean a higher F:B ratio? And if so, could we draw any conclusions about carbon sequestration capabilities from that?

Generally as the MBC increases there is an increase in fungi. The soil food web is a balanced community. Some communities are more fungal dominated some less, but similar communities tend to have the same F:B ratio. It is generally believed that fungi, especially mycorrhizal fungi, contribute more to carbon sequestration than bacteria. This may be because glomalin is carbon rich and tends to sequester.

To further my understanding of soil/compost mixtures. I performed two microBIOMETER® tests. One test was on “active compost” which is compost in a medium stage of decomposition, and generates some CO2 and another one “finished compost” which is cured, ready for usage, and low CO2 production. However, I found that they had similar amounts of MBC and F:B ratio. Is this normal?

A study with microBIOMETER® at University showed a higher F:B in finished compost. The higher respiration/MBC indicates that your unfinished compost is still being digested — working microbes make more CO2. Holding MBC stable in your finished product is good.

 

Often, we are asked about variance – different results when you test the same sample. Our answer is that nature produces most of this variance. To explain, when you measure out 0.5 cc of soil, you have on average about 0.6 grams of soil. If your microBIOMETER® results read 300ugMBC/gram of soil, that means you have 600ug of microbial biomass – we divide the number we get by ½ because the literature tells us that 50% of the dried MB is carbon. As dried bacteria is estimated to weigh 1pg, if this were all bacteria, it constitutes 600,000,000pg or 600 million bacteria.

Now imagine that I have 600 apartment buildings in NYC that each contain 1 million people, and I decide to check 10 apartments in 10 buildings at 4 p.m. to estimate the number of people actually in the building. Obviously, it would vary because people are not always in their apartment and different apartments have different numbers of inhabitants – the same is true for soil.

Soil contains microscopic aggregates of different sizes and the number and type of inhabitants in each varies on the physical and chemical composition of the space as well as the nutrient, pH and hydration level. Each sample you take is like looking at a number of different apartments in a number of apartment buildings.

For this reason, when conducting research, soil and medical researchers run duplicates or triplicates. Because of cost, soil labs generally do not run duplicates and they see 10- 25% variation. We are recommending running duplicates when using microBIOMETER® unless you are doing academic research. Generally, we see <10% variation for a given sample, and for a field that looks homogeneous. Pastures can have much higher variation because the nutrients level across the area varies tremendously.

Source: How Plants ‘Farm’ Soil Microbes and Endophytes in Roots

UPDATE: Dr. White sat down with Dr. Fitzpatrick and Jeff Lowenfels to discuss rhizophagy. Click here to view the webinar. (Jan. 15, 2021)

A summary of James F. White’s presentation at BioFarm, 2020 (Nov. 12, 2020). 

The rhizophagy cycle is an amazing process recently discovered by James White’s laboratory at the University of New Jersey, by which root tips “ingest” bacteria and absorb nitrogen and phosphorus and other nutrients from them.

The microbes pictured here in roots are called endophytes because they can live inside plants. The bacteria are attracted to the root tip by root exudates. They then enter the root where the cell walls are dissolved using superoxide, allowing nutrients to leak out to the plant. But the plant does not kill the microbes instead the microbes stimulate the formation of root hairs, which are escape routes for the microbes.

After ejection from root hair tips, bacterial cell walls re-form. The bacteria fatten up and are soon ready to acquire soil nutrients and become another meal for the plant.

Source: How Plants ‘Farm’ Soil Microbes and Endophytes in Roots

Not only does rhizophagy provide mineral nutrients, it is also the stimulus for formation of root hairs, which are critical to the establishment of a healthy root as can be seen in this photo of a plant root with and without endophytes.

 

 

 

microBIOMETER® reports the microbial biomass as ug of microbial carbon/gram of soil. The chart pictured here shows how much carbon can be stored in an acre just by increasing microbial biomass alone. (Chemically fertilized farmland averages about 100 ug/microbial C/g of soil.)

Microbial biomass is the best single estimate of soil quality. It is the bodies of dead microbes that build humus/soil organic carbon, returning carbon to the soil and building soil structure which prevents erosion and pollutant run off. (Chemical nitrogen fertilizers have been shown to inhibit microbial biomass.)

The literature reports that lab measurements of soil organic carbon are not sufficiently accurate in monitoring an increase in carbon sequestration in less than 3 years but that a yearly increase in microbial biomass can indicate that the process of carbon accumulation is occurring.

microBIOMETER® has been used to demonstrate increases in soil carbon due to increases in microbial biomass on the Apple campus in Texas and for 3 years by the NYC Arts and Science Carbon Sponge Project.

Source: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls.

Excerpt from the Carbon Sponge guide

Carbon Sponge is an interdisciplinary collaboration exploring the potential for urban soils to sequester carbon as a means to mitigate anthropogenic greenhouse gases and build healthy soil.

At microBIOMETER® we were very excited to work with Brooke Singer and play a role in this important project. Brooke initiated Carbon Sponge during her residency at the New York Hall of Science in 2018. Being introduced to the early version of microBIOMETER® (pictured here) was one of the factors that paved the way for Carbon Sponge. An excerpt from the guide, “Getting access to a tool that quickly, easily and cheaply measures microbial biomass in a soil sample, without needing a lab test, holds a lot of potential.”

Click here to order the Carbon Sponge Guide. All proceeds go to support the project.

Currently, Brooke along with her colleague Sara Perl Egendorf  are working with five New York City farms and gardens that are participating in Carbon Sponge’s pilot testing program using a collection of tools, including the microBIOMETER®, to track urban soil health over time and consider the readiness of the soil to sequester carbon. The affiliates (a few pictured below) are: Bronx River Foodway, GrowNYC Teaching Garden on Governor’s Island, Pioneer Works, Prospect Farm and Red Hook Farms.

Healthy soil is brimming with beneficial microbes, and those microbes are one of the important keys to ensuring the health of your plants. Along with breaking down key nutrients for your plants, they’ll aerate the soil so nutrients are evenly distributed, and fend off parasitic microbes so your garden can grow in peace.

Considering the wealth of benefits, it’s no surprise that it is recommended that you do everything you can to maximize the microbial biomass in your soil. While there’s complicated science behind it, nourishing and increasing the amount of microbes in your soil is simple, and can be accomplished with a few tried and true methods. And  thanks to the microBIOMETER®  soil test, even amateur gardeners can track their microbial biomass levels. 

First, let’s detail how you can take care of those important microbes and enhance their numbers. It’ll involve shedding some old gardening habits, along with taking on some new ones, but we promise the end results will be worth it. 

What To Avoid

Before you start taking extra steps to care for and increase your microbial biomass, you should ensure you’re avoiding certain tactics that are known to hinder their growth.

While you might think avoiding pesticides wouldn’t enhance plant health, a close look at the ingredients of most pesticides will show you they do far more harm than good. Amongst a variety of issues, one of the most harmful is the fact they decimate microbial populations in the soil. If you want to ensure pests will stay away in the absence of pesticides, try utilizing companion plants instead.

While pesticides are bad, fungicides are even more of a threat. Some of the most vital microbes in your soil, being fungi, would be directly targeted by these treatments. The harshness of these chemicals would also wreak havoc on the non-fungi microbes, all but eliminating any trace of a microbial biomass. Even if you can’t do everything on this list, ensure you at least abide by this particular rule. 

Lastly, while many gardeners and farmers consider tilling a standard gardening process, you’ll want to abstain from it if you’re focusing on your soil’s microbes. That, of course, is due to the level of soil disturbance that occurs during the process. The process leads to lost microbes (especially fungi), and any benefits gained from additions made to the soil end up being cancelled out. By avoiding tilling, you’ll allow the delicate environment in your soil to function undisturbed and, in turn, at full capacity. 

What To Do

Now that you’ve cut those bad habits out of your gardening routine, you have room for a few that’ll greatly benefit your soil in the long run.

Nothing gets microbes into the soil like a nice big pile of compost! All that food breaking down in one big pile is basically a feast for all the helpful microbes you want around your plants. Once you add it onto your soil, then turn it to make sure air hits every part of it, you’ll be ensuring the microbes have plenty of energy to break down nutrients. To ensure the best compost possible, make sure you add in natural components like grass clippings, fruits, vegetables, wood chips, and straw. There’s no need to exclude other foods, even processed ones, but a healthy blend of green and brown material is a must. 

Following the same logic, compost teas can do wonders for the microbes in your soil. All you have to do is take some compost and put it in a water permeable pouch,  add some microbe feeding nutrients (perhaps like molasses), and let it brew (bubbling air into it) until the microbes in the compost have multiplied and the tea is full of microbes. Once done, pour it all around the base of your plants. One round will do your plants good, but repeating this process a few times during your growing process will really make a difference.

This last step is actually three steps and if these conditions aren’t met, virtually nothing else on this list will have a noticeable effect. To start, making sure you have adequate moisture is as simple as regularly watering your plants. You may also want to consider purchasing a moisture meter to assure your levels are ideal. Next, the ideal pH range for soil is between 6.0 and 7.0, so you’ll have to test your soil to see where you’re at. If your soil pH is too low try adding limestone and if your pH is too high you can add aluminum sulfate and sulfur to get things balanced. Lastly, mulching is a great way to help your soil maintain an even temperature. 

Incorporating these simple tactics into your crop management is an important first step to building the microbial biomass in your soil. Another critical step is testing and quantifying the results of these inputs since decision making without data is like driving blindfolded. microBIOMETER® is a rapid, on-site soil test for microbial biomass. Microbes respond very quickly to any changes in the soil, therefore, you can set a baseline then retest within a week to see if you are heading in the right direction.

 

Microbial biomass (MB) is the best single indicator of soil health (Doran, 2000). Microbes feed and protect plants, build soil structure which prevents erosion, increase water holding capacity, and build soil organic matter (SOM). MB is low in any situation that is harmful to plant growth (and vice versa) and protects against pathogens, thereby reducing the need for pesticides. MB can predict success before plant outcome. The Fungal:Bacterial ratio (F:B) of the MB provides crucial information regarding colonization by Arbuscular Mycorrhizal Fungi (AMF), and the recycling metabolic processes of saprophytic fungi (SpF).

Soil stewards all over the world are seeking to understand the microbial levels in their soil and the ratio of fungal to bacterial life. The higher the microbial biomass, the more nutrients will be available to plants naturally, decreasing or eliminating the need for chemical fertilizers. Higher fungal to bacterial ratios are critical for building soil structure that prevents erosion and runoff off of pollutant chemicals while building moisture holding capacity of the soil and sequestering carbon.

Soil health is fast becoming one of the most important factors in agriculture and in the growing efforts to improve the earth’s stock of agricultural land. Farmers, industry, and environmentalists are looking for cost-effective and reliable ways to measure soil health and to assess impacts of progressive changes to soil and harvest management.

Testing soil in homogeneous sections at similar stages of the growth cycle can set a baseline for microbial biomass and fungal to bacterial ratio. That baseline can be used to assess how different stewardship practices are impacting the soil and allow for refinement to soil management plans and show soil health improvement over time. While every soil steward’s situation is unique, microBIOMETER® can help measure, follow, and assess efficacy of improvement to soil health.